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Econometric Models and Samples: Equivalence  
 

A random sample is a sample in which the events or observations are randomly drawn 

from the population, universe or sample space, as explained in Appendix A. The events 

in a randomly drawn sample may or may not appear in random order. In contrast, an 

unsorted sample is a sample in which the events appear in random order. A sorted sample 

is a sample in which the events appear in nonrandom order. A random variable 

represented by the probability distribution of a sequence of randomly generated numbers 

will have no statistical significance or explanatory power, as shown in Appendix B. 

For example, if a randomly drawn sample of common stocks is sorted by market 

capitalization (from low to high, or from high to low) and then partitioned into portfolios 

(e.g., quintiles, deciles, or other fractiles), this data sorting per se does not introduce any 

new information into any other variable in the sample. 

But when a group-based variable is constructed from a sorted and partitioned sample 

by any variable other than a randomly generated number assigned to each observation, 

the variable used for sorting and grouping the observations introduces new information 

into the newly constructed variable. For example, when a sample of common stocks is 

sorted and grouped into portfolios using market capitalization as the portfolio formation 

variable and these portfolios are used to create a portfolio-based variable, then market 

capitalization is introduced into the portfolio-based variable.  

Testing and Estimating Econometric Models 
 

One of the estimation and testing methods for econometric models is the Classical 

Linear Regression Model estimated by Ordinary Least Squares techniques pursuant to the 

least-squares principle and the Gauss-Markov Theorem, the workhorse of econometrics. 
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The statistical significance of each explanatory variable that is directly specified in a 

given econometric model equation is measured by the probability level or by the 

Student’s t-statistic, with a critical value equal to conventional levels of probability. 

Typically, the critical value is probability = 5%, two-tail test. The statistical significance 

of the combination of explanatory variables that are directly specified in a given model 

equation is measured by the F-statistic in the F test. 

The explanatory power of a univariate, monocausal, econometric model (one 

explanatory variable) is measured by the coefficient of determination, R2, which ranges 

from a minimum of zero to a maximum of 100. For a multivariate econometric model 

(two or more explanatory variables), the explanatory power is measured by the adjusted 

coefficient of determination, to allow for interaction between the explanatory variables. 

In the case of a univariate econometric model, the coefficient of determination is equal to 

the square of the Pearson’s product-moment correlation coefficient. The correlation 

coefficient ranges from a minimum of negative one for perfect inverse correlation to a 

maximum of positive one for perfect direct correlation, and zero is no correlation. 

Empirical Benchmarks for Econometric Models 

In the doctoral dissertation entitled Capital Market Efficiency of Firms Financing 

Research and Development by Robert D. Coleman, 1996, [Coleman (1996)] empirical 

lower and upper benchmarks are used for comparison with the explanatory variables 

specified in the econometric models. The lower benchmark variable, LEXI, is designed to 

approximate a randomly-generated number. LEXI is the lexical order of the company 

name of each common stock in the sample used for econometric model testing and 

estimation of parameters. The upper benchmark variable, MKEQ, is designed to 
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approximate a tautology. MKEQ is the market equity of each common stock in the 

sample, where market equity is equal to share price multiplied by the number of shares 

outstanding for each company. 

LEXI was used instead of a randomly-generated number because LEXI would not 

approach zero explanatory power as closely as would a randomly-generated number. In 

addition, LEXI is more highly visible and memorable, thereby emphasizing that positive 

steps were taken in the research design to draw attention to this important characteristic 

of sample construction.  

The theoretical lower and upper limits of the explanatory power of an econometric 

model are zero percent and 100%, as indicated by the coefficient of determination, R2, for 

simple linear regression or the adjusted coefficient of determination or multiple 

coefficient of determination, adjusted R2, for multiple linear regression. The range of the 

theoretical R2 is zero percent to 100%, and the range of the empirical R2 is a low positive 

percent greater than zero percent to a high positive percent less than 100%. The lower 

and upper benchmarks are provided by separate econometric models, in contrast to 

separate explanatory variables specified in the same econometric model with the non-

benchmark explanatory variables. 

The main appearances of the LEXI variable in the subject doctoral dissertation are 

summarized in Table 1. The market proxies for this study were provided by the CRSP 

database of monthly prices, capitalization changes, and dividends, as shown in Table 2: 

As reported in Coleman (1996, Table 27, Part A and Part B, page 193), the Pearson’s 

product-moment correlation coefficient between BSPRD and LEXI is equal to 0.06 or 6%. 
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BSPRD is the estimated CAPM market-beta factor based on the S&P 500 with reinvested 

dividends as the market proxy. 

In a univariate econometric model to explain BSPRD, with LEXI specified as the sole 

explanatory variable, the coefficient of determination, R2, is equal to (0.06 x 0.06) = 

0.0036 or 0.36%. This R2 is calculated by commercial statistical analysis software 

packages using proprietary computational algorithms. Any grouping of a randomly-

drawn sample before model testing and estimation of parameters with related statistics 

may result in a positive value for the R2 statistic. There is a logical reason for the positive 

explanatory power in a simple linear regression of BSPRD on LEXI, even if it is counter-

intuitive. The non-zero explanatory power can be considered a statistical artifact. 

Econometric Equivalence 
 

Econometric equivalence here means that an explanatory variable in an econometric 

model can be tested, and the qualitative result of the statistical test will be the same 

(either accept or reject the null hypothesis, at the critical level of probability with either 

one-tail or two-tail test) regardless of whether the variable is directly specified in the 

model equation or indirectly included in a group-based variable that is specified in the 

model equation, as shown in Appendix C and Appendix D. 

The formulas for the calculation of the parameters and statistics for an econometric 

model equation are presented in introductory econometrics textbooks. Simple univariate 

regression models (Y = a + bX + e, where Y is the dependent variable to be explained,  “a” 

is the intercept, “b” is the regression coefficient, X is the explanatory variable, and e is 

the stochastic disturbance term or error term) can be estimated with small samples (e.g., 

five data points) using pencil, paper and no calculator. Multivariate regression models 
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can be estimated with large samples (thousands of data points) using computational 

algorithms and large-memory, high-speed, electronic computers. Competing proprietary 

algorithms achieve either greater computational speed with no loss in precision or greater 

precision with no loss in speed. Commercial professional statistical software packages 

have very high accuracy of calculations, and the degree of accuracy can be considered the 

same for most practical applications. 
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Table 1. LEXI Benchmark Explanatory Variable 

Page Section or Table Item 
98 Table 6. Measures and Formulas Benchmarks 

101 Table 8. Descriptive Statistics BSPRD and LEXI 
115 The Explanatory Benchmarks Lower Benchmark: LEXI 

Upper Benchmark: MKEQ 
123 Table 11. Glossary and Definitions: 

Basic Variables 
Market Proxies: VWRXG, EWRXG, 
SPRXG, and SPRDG 

193 Table 27. Correlation Analysis LEXI 
228 Table 37. Univariate CAPM Benchmarks: Case 12: MKEQ 

Benchmarks: Case 13: LEXI 
229 Table 38. Univariate CAPM Market Proxies: VWRXG, EWRXG, 

SPRXG, and SPRDG 
264 Table 52. Dynamic Return-Generative 

Process 
Case 25: Model 1 
Case 25: Model 2 

265 Table 53. Dynamic Return-Generative 
Process 

Case 25: Model 1 
Case 25: Model 2 

266 Table 53. Dynamic Return-Generative 
Process 

Legend 

267 Table 54. Dynamic Return-Generative 
Process 

Case 25: Model 1 
Case 25: Model 2 

268 Table 54. Dynamic Return-Generative 
Process 

Legend 

269 Table 55. Dynamic Return-Generative 
Process 

Case 25: Model 1 
Case 25: Model 2 

271 Table 56. Dynamic Return-Generative 
Process 

Case 5: Model 1 
Case 5: Model 2 

Source: Coleman, Robert D., Capital Market Efficiency of Firms Financing Research and 
Development, May 1996. Ph.D. dissertation. Dallas, TX: The University of Texas at Dallas. 
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Table 2. Stock Market Proxies 

Proxy Definition 
VWRXG Value-weighted NYSE/AMEX/NASDAQ full nominal total gross return without 

dividends reinvested 
EWRXG Equal- weighted NYSE/AMEX/NASDAQ full nominal total gross return without 

dividends reinvested 
SPRXG S&P 500 Index full nominal total return without reinvested dividends 
SPRDG S&P 500 Index full nominal total return with reinvested dividends 

Source: Coleman, Robert D., Capital Market Efficiency of Firms Financing Research and 
Development, May 1996. Ph.D. dissertation. Dallas, TX: The University of Texas at Dallas, 
Table 11, page 123. 
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APPENDIX A 

GROUPED SAMPLES 
 
Gujarati, Damodar N., Basic Econometrics, 2/e, 1988, New York: McGraw-Hill. 
 
Appendix A. A Review of Some Statistical Concepts 
A.2. Sample Space, Sample Points, and Events 
Pages 624-625 
The set of all possible outcomes of a random, or chance, experiment, is called the 
population, or sample space, and each member of this sample space is called a sample 
point. … An event is a subset of the sample space. … Events are said to be mutually 
exclusive if the occurrence of one event precludes the occurrence of another event. … 
Events are said to be (collectively) exhaustive if they exhaust all the possible outcomes of 
an experiment.  
 
A.3. Probability and Random Variables 
Pages 625-626 
See the text. 
 
Bailey, Kenneth D., Methods of Social Research, 1987, 3/e, New York: The Free 
Press. 
 
Chapter 4. Measurement 
 
Level of Measurement 
Page 61 
S. S. Stevens (1951) constructed a widely adopted classification of levels of measurement 
in which he speaks of nominal measurement, ordinal measurement, interval 
measurement, and ratio measurement. 
 
Chapter 5. Survey Sampling 
Probability Sampling 
Page 87 
Sampling methods can be classified into to those that yield probability samples and those 
that yield nonprobability samples. In the former type of sample the probability of 
selection of each respondent is known. In the latter type, the probability of selection is 
not known. 
 
Random Sampling 
Pages 87-88 
Probably the best-known form of probability sample is the random sample. In a random 
sample each person in the universe has an equal person of being chosen for the sample, 
and every collection of persons, of the same size, has an equal probability of becoming 
the actual sample. This is true regardless of the similarities or differences among them, as 
long as they are members of the same universe. 
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All that is required to conduct a random sample, after an adequate sampling frame is 
constructed, is to select persons without showing bias for any personal characteristics. 
Notice that the adequacy of the random sample depends on the adequacy of the sampling 
frame. 
 
Another factor is that sampling for surveys is usually sampling without replacement. … 
Sampling without replacement is called simple random sampling. 
Simple random sampling is usually considered adequate if the chances of selection are 
equal at any given stage in the sampling process.  
 
The usual procedure in random sampling is to assign a number to each person or 
sampling unit in the sampling frame, so that one cannot be biased by labels, names, or 
other identifying criteria. 
 
Random sampling has the advantage of canceling out biases and providing a statistical 
means for estimating sampling errors. 
 
Chapter 16. Data Reduction, Analysis, Interpretation, and Application 
Table Presentations 
Page 371 
Statistical analysis is generally presented either in equation form or in a table or graph of 
some sort. 
 
Univariate Presentation 
Page 371-372 
In a descriptive study, especially an exploratory one, the researcher may be more 
concerned with describing the extent of occurrence of a phenomenon than with studying 
its correlates. In such a case a univariate presentation is in order. … One useful and easy 
presentation is the range of scores, which is defined as the highest score minus the lowest 
score.  
 
In addition to the range, the researcher can present averages or measures of central 
tendency such as the mean, median, and mode. … In addition to the mean it is helpful to 
compute a measure of dispersion such as the variance.  
 
Other succinct measures that can be given without presenting all scores are the frequency 
distribution and grouped data. The frequency distribution is a listing of the frequency 
with which each score occurs. .. For an interval variable with many possible scores, such 
as income, even presentation of a frequency distribution may not be feasible. In this case 
the researcher may wish to group the data into categories and present the frequency of 
scores within each category. Such a grouped frequency distribution is obviously a 
compromise. It provides frequencies of each group of scores from low to high, but 
provides no information on ranges or variations in scores within each group. … One has 
to compromise by providing few enough groups so that the data is manageable without 
making each group too broad. 
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Hypothesis Testing 
Page 381 
Statistics that are used to infer the truth or falsity of a hypothesis are called inferential 
statistics, in contrast to descriptive statistics, which do not seek to make an inference but 
merely provide a description of the sample data.  
 
The general inference to be tested is that some phenomenon that is true for a sample is 
also true for the population from which the sample was drawn.  
 
Another distinction often made is between parametric and nonparametric statistics. 
Nonparametric statistics are those used when the variables being analyzed are either 
nominal or ordinal, and interval measurement may not be assumed. Thus nonparametric 
statistics are also called order statistics. The name “nonparametric” stems from the fact 
that these statistics are not based on assumptions about the parameters of the distribution 
(the normal or bell-shaped distribution is not assumed, for example). However, this does 
not mean that no assumptions are necessary for using nonparametric statistics. … 
Parametric statistics are used when interval measurement can be assumed. 
 
Blalock, Hubert M., Jr., Social Statistics, revised second edition, 1979, New York: 
McGraw-Hill. 
 
Table on inside of front cover (with one data cell populated):  

Two-Variable (bivariate) procedures 

Measurement level of second variable 

Measurement 
level of first 
variable 

Single 
variable 
procedures 

Dichotomy Nominal 
(c categories) 

Ordinal Interval and 
ratio 

Dichotomy      

Nominal 
(r categories) 

     

Ordinal      

Interval and 
ratio 

    Correlation and 
regression 
Chaps. 17, 18 

 
Chapter 4. Interval Scales: Frequency Distributions and Graphic Presentation 
Page 41 
In the following two chapters we shall be concerned with methods of summarizing data 
in a more compact manner so that they may be described by several numbers representing 
measures of typicality and degree of homogeneity. 
 
4.1. Frequency Distributions: Grouping the Data 
Page 41 
If interval-scale data are to be summarized in a similar manner, however, an initial 
decision must be made as to the categories that will be used. Since the data will ordinarily 
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be distributed in a continuous fashion, with few or no large gaps between adjacent scores, 
the classification scheme may be somewhat arbitrary. If will be necessary to decide how 
many categories to use and where to establish the cutting points. Unfortunately, there are 
no simple rules for accomplishing this since the decision will depend on the purposes 
served by the classification. 
 
Chapter 9. Probability 
9.1. A Priori Probabilities 
Page 116 
Let us call any outcome or set of outcomes of an experiment an event, with the set of all 
possible outcomes under the null hypothesis being referred to as the sample space. An 
event can be simple (nondecomposable) or compound (a combination of simple events). 
… It is conventional to use the term success whenever the event under consideration 
occurs and failure when it does not occur.2 (2 This technical use of the terms success and 
failure need not conform to general usage.) 
 
9.5. Independence and Random Sampling 
Pages 139-140 
All the statistical tests to be discussed in this text make use of the assumption that there is 
independence between events and that therefore conditional probabilities do not have to 
be used when multiplying probabilities. In other words, it is assumed that there is 
independence of selection within a sample—the choice of one individual having no 
bearing on the choice of another individual to be included in the sample. There are many 
instances in which this important assumption is likely to be violated, however. One 
should therefore develop the habit of always asking himself whether or not the 
independence assumption is actually justified in any given problem. 
 
Statisticians often obtain what is called a random sample (or simple random sample) in 
order to meet the required assumption of independence as well as to give every individual 
in the population an equal chance of appearing in the sample. … A random sample has 
the property not only of giving each individual an equal chance of being selected but also 
of giving each combination of individuals an equal chance of selection. 
 
Strictly speaking, since we practically always sample without replacement, the 
assumption of independence is not quite met. 
 
Although the problems introduced by failure to replace are not serious ones, the failure to 
give every combination of individuals an equal chance of appearing in the sample may 
result in a serious violation of the independence assumption. 
 

 



Robert D. Coleman, PhD © 2006 rcoleman@mba1971.hbs.edu 

 12 

APPENDIX B 
 

Source: Coleman, Robert D., 2005, “Circling the Square”. In: “Asset Pricing Circularity”, 
research paper, page 10. 
 
Table. Estimated OLS Regression of Logically Circular Equations for Unit Rectangles. 
Explained Variable (DV), Explanatory Variables (IV), estimated coefficients (Β), 
Student’s t, and R-square coefficient of multiple determination. Sample Size = 64. 

 
DV IV  Β t IV  Β t R-SQ 

        
P L 2.00 8      50% 
P L 2.00 2e15 W 2.00 2e15 100% 
A L 5.50 7      46% 
A L 5.50 19 W 5.50 19   92% 
C L 0.13 7      45% 
C L 0.13 16 W 0.13 16   90% 
        

C A 0.02 44      97% 
C P 0.06 23      90% 
C P 0.002 0.46 A 0.02 12   97% 
C 1/P -19.24 11      67% 
C 1/P -2.29 3 A 0.02 26   97% 
        

C O 0.08 1.66        4% 
C 1/O -0.30 1.55        4% 

C/O* 1/O 1.16 10      58% 
C S -0.26 5      27% 
C S -0.25 5 O 0.06 1.39   29% 

C/O* S/O -0.23 5 1/O 1.62 15   68% 
C D 0.17 15      78% 
C D 0.17 14 O 0.01 0.51   78% 

C/O* D/O 0.17 14 1/O -0.14 1.46   90% 
C R 0.46 56      98% 
C R 0.46 55 O  -0.0001 0.11   98% 

C/O* R/O 0.46 55 1/O -0.12 5   99% 
        

C X -0.004 1.85        5% 
C/X*  1/X 0.00 0.00        1% 

* Intercept constrained to equal zero. 
Note: t (60 df, 2-tailed test): 2.00 = 5% probability and 2.66 = 1% probability. 

 
LEGEND 

A = area = L*W  P = perimeter = (L+W)*2  
C = compactness = A/P  R = radius of circle = sqrt(A/π)  
D = diagonal = sqrt(L**2+W**2)   S = sides ratio = long side/short side  
L = length (2, …, 9)  W = width (2, …, 9)  
O = oddness (1, 2, 3 or 4)  X = random integer (1, …, 100)  
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APPENDIX C 
 

STATISTICAL REGRESSION PROCEDURES 
 
Source: SAS/STAT User’s Guide, Version 6, Fourth Edition, Volume 2, Cary, NC: SAS 
Institute, Inc. 
 
Chapter 36. The REG Procedure (pages 1351-1456) 
Page 1352: 
ABSTRACT 
The REG procedure fits linear regression models by least-squares. Subsets of 
independent variables that “best” predict the dependent or response variable can be 
determined by various model-selection methods. 
 
INTRODUCTION 
PROC REG is one of the many regression procedures in the SAS System. REG is a 
general-purpose procedure for regression, while other SAS regression procedures have 
more specialized applications. … SAS/ETS procedures are specialized for applications in 
time-series or simultaneous systems. These other SAS/STAT and SAS/ETS regression 
procedures are summarized in Chapter 1, “Introduction to Regression Procedures,” which 
also contains an overview of regression techniques and defines many of the statistics 
computed by REG and other regression procedures. 
 
Page 1353: 
PROC REG performs the following regression techniques with flexibility: 
 

• handles multiple MODEL statements 
• provides nine model-selection methods 
• allows interactive changes both in the model and the data used to fit the model 
• allows linear inequality restrictions on parameters 
• tests linear hypotheses and multivariate hypotheses 
• generates scatter plots of data and various statistics 
• “paints” or highlights scatter plots 
• produces partial regression leverage plots 
• computes collinearity diagnostics 
• prints predicted values, residuals, studentized residuals, confidence limits, and 

influence statistics and can output these items to a SAS data set 
• can use correlations or crossproducts for input 
• write the crossproducts matrix to an output SAS data set 
• performs weighted least-squares regression 

 
Nine model-selection methods are available in PROC REG. The simplest method is also 
the default, where REG fits the complete model you specify. 
 
Page 1354: 
Least-Squares Estimation 
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REG uses the principle of least squares to produce estimates that are the best linear 
unbiased estimates (BLUE) under classical statistical assumptions (Gauss 1809; Markov 
1900). 
 
Page 1357: 
Although there are numerous statements and options available in REG, many analyses 
use only a few of them.  
 
PROC REG <options>; required statement
 
<label>: MODEL dependents=<regressors> required statement
                             < / options>;                 for model fitting;
 can be used interactively
 
BY variables; [each of these five statements,
FREQ variables; when used,]
ID variable; must appear before
VAR variables; the first RUN statement
WEIGHT variable; 
 
RUN; the RUN statement

 
In the above [selective] list, angle brackets denote optional specifications, and vertical 
bars denote a choice of one of the specifications separated by the vertical bars. In all 
cases, label is optional. 
 
The PROC REG statement is required. To fit a model to the data, the MODEL statement 
is required. The BY, FREQ, ID, VAR, and WEIGHT statements are optionally specified 
once for the entire PROC REG step and must appear before the first RUN statement. 
 
Page 1358: 
The statements used with the REG procedure in addition to the PROC REG statement are 
the following [selective] (in alphabetic order): 
 
BY  specifies variables to define subgroups for the analysis. 
 
MODEL specifies the dependent and independent variables in the regression model, 

requests a model selection method, prints predicted values, and provides 
details on the estimates (according to which options are selected). 

 
 
 
Pages 1360-1361: 
BY Statement 
 
BY variables 
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A BY statement can be used with PROC REG to obtain separate analyses on observations 
in groups defined by the BY variables. When a BY statement appears, the procedure 
expects the input data set to be sorted in order of the BY variables.  
 
If your input data set is not sorted in ascending order, use one of the following 
alternatives: 
 

• Use the SORT procedure with a similar BY statement to sort the data. 
• Use the BY statement options NOTSORTED or DESCENDING in the BY 

statement for the REG procedure. 
• Use the DATASETS procedure (in base SAS software) to create an index on the 

BY variables. 
 
When a BY statement is used with PROC REG, interactive processing is not possible; 
that is, once the first RUN statement is encountered, processing proceeds for each BY 
group in the data set, and no further statements are accepted by the procedure. A BY 
statement that appears after the first RUN statement is ignored. 

 
COMMENTS 

In private correspondence with the author, a member of the SAS technical service 

staff added the following clarification.  

Explanatory variables in your model cannot go on the BY statement in any SAS 

procedure.  The sole purpose of the BY statement is to provide you with the separate 

estimation of the model for each level of the BY group. For example, if you were to run 

the following:  

PROC REG;  
MODEL   gnp = year   manufact   service   pop;  
BY   country;  

RUN;  
 

then you would get a separate model for each country.  
 

That is not the same as running the following:  
 
PROC REG;  

MODEL   gnp = country   year   manufact   service   pop;  
RUN;  
 

which would fit one model to the entire dataset. 
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When you insert the BY statement in PROC REG, that changes how the standard 

errors will be calculated for the terms in the MODEL statement, and that could change 

the statistical conclusion drawn. Instead of calculating the standard errors from all the 

data in the dataset, the BY statement forces the calculation of standard errors within each 

BY-group separately. That difference in the calculation of standard errors could (and 

should) force different conclusions, if the data warrant it. 

In the example, assume the dataset includes: 
 

360 observations for the US, 
240 observations for Canada, 
120 observations for Mexico, and 
720 observations for all countries in total. 

 
In SAS, when a BY statement is inserted between a PROC REG statement and the 

first subsequent RUN statement, and the BY grouping-variable is "country", then the 

equation in the MODEL statement will be fitted for each value of the "country" variable 

in the dataset, taking each country-value in turn, but using only the subset of the 720-

observation dataset that applies to each country-value in order to make the calculations 

for the associated "country". 

With the BY statement inserted, therefore, the SAS calculations of the Standard Error 

(SE) and calculations of the test statistic (e.g., Student's t-statistic) will use the value of 

"n" for number of independent observations as follows: 

country-value = US            n = 360. 
country-value = Canada     n = 240. 
country-value = Mexico     n = 120. 

 
In contrast, with no BY statement inserted, the SAS calculations of SE and Student's 

t-statistic will use the value of "n" for number of independent observations as follows: 

country-values = US, Canada, Mexico    n = 720. 
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Why does this make any difference? Generally, a higher value of "n" results in a 

lower value of SE, and SE appears in the denominator of the Student's t-statistic. In 

addition, "n" appears in the numerator of the Student's t-statistic. Therefore, a higher 

value of "n" increases the Student's t-statistic in two ways: by decreasing the 

denominator, and by increasing the numerator. 

In effect, the BY statement in SAS is a productivity technique and not a statistical 

technique. The alternative to using the BY statement is to partition the sample into sub-

samples. In the above example, the 720-observation dataset could be divided into three 

subsets (360, 240, and 120 observations), one subset for each country. Then the 

regression could be run three separate times, one time on each of the three country 

datasets, but this is less efficient than running the regression only once. 
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APPENDIX D 

Source: Coleman, Robert D., 2006, “Single-Equation Simultaneity Paradox”, research 
paper, pages 23-26 and 49. 

 
REGRESSION EXAMPLE: EQUIVALENCE 

An explanatory variable can be introduced into an econometric regression model in at 

least four ways. We are concerned with group-based variables. To simplify our 

discussion, we use only two explanatory variables. We use DIV as the group-formation 

variable because it has the widest range of the three explanatory variables. We sort the 

sample in ascending order of DIV with the smallest observation ranked number one and 

then divide the sample into three DIV fractile groups that are as closely equal in size as 

possible without being equal: Low (n = 1 to 39), Middle (n = 40 to 79), and High (n = 80 

to 121). Then we run five regression models.  

The first regression model is run overall with group interactions: 

PDVi = ai + b1i(RIVi) + b2i(GROUPi) + b3i(RGi) + ui, i = 1, …, 121 (1)
 
where i indexes individual observations, GROUP = 1, 2 or 3, formed on DIV, and RG = 

(RIV)(GROUP). 

The second regression model is run overall with dummy variables: 
 

PDVi = ai + b1i(RIVi) + b2i(DUMG2i) + b3i(DUMG3i) +  
 

b4i(RD2i) + b5i(RD3i) + ui, i = 1, …, 121 
(2)

 
where RD2 = (RIV)(DUMG2), RD3 = (RIV)(DUMG3), DUMG2 [1 = Yes or 0 = No] is 

the dummy variable for GROUP = 2, and DUMG3 [1 = Yes or 0 = No] is the dummy 

variable for GROUP = 3. The DUMG1, DUMG2 and DUMG3 dummy variables 
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represent Low, Middle and High DIV, and DUMG1 is omitted to avoid the dummy-

variable trap.  

The third regression model is run by group formed on DIV: 

PDVig = ag + bg(RIVig) + uig, i = 1, …, 121; g = 1, 2, 3 (3)
 
where g indexes GROUP formed on DIV, resulting in three separate regressions, one on 

each DIV group. 

The fourth regression model directly and explicitly specifies DIV as a separate 

explanatory variable: 

PDVi = ai + b1i(RIVi) + b2i(DIVi) + ui, i = 1, …, 121 (4)
 

The fifth regression model is the same as the third regression model except that is it 

has no grouping of observations: 

PDVi = a + b(RIVi) + ui, i= 1, …, 121 (5)
 

The regression models in Eq. (1), Eq. (2), Eq. (4) and Eq (5) contain the same 

information, and they will return the same results for the same sample. The regression 

model in Eq. (3) contains additional information about the number of groups, which is 

not meaningful information but rather is somewhat arbitrarily chosen. More importantly, 

Eq. (3) specifies groups or sub-samples, and this reduction in sample size alone will 

change the calculation of standard errors and the test statistics. Properly interpreted, the 

full-sample regressions [Supplement: Tables A4-A8] return equivalent statistical tests 

and R-square’s, as summarized in Table C1 and Table C2. The base case for comparison 

is the regression equation that specifies only RIV in Eq. (5). 

As it turns out, Eq. (3) results in the same statistical conclusions as do the other model 

equations. It may appear superficially that Models 3A, 3B and 3C do not include DIV 
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because it is not specified as an explanatory variable, neither directly by itself nor 

indirectly by entailment in another variable. Nevertheless, the influence of DIV is 

transmitted indirectly through its use in grouping the observations to form sub-samples. 

It also may appear that Models 1 and 2 do not include DIV because it is not explicitly 

specified in the model. But here again, close scrutiny of the specified explanatory 

variables will reveal its presence. When an interval-scale variable is used to form groups, 

it is reduced to a category-scale variable, resulting in a reduction of the effective sample 

size and thus less efficient estimation. 

A group-based factor can introduce an explanatory variable as shown in the estimated 

models below. Bold-face emphasis indicates a parameter that is statistically significant at 

the 5% level of probability with non-directional (two-tail) test. 

PDV = – 1.59 + 6.80RIV + 4.88GROUP – 0.66RG 
 

where GROUP is formed on DIV; RG = (RIV)(GROUP); N = 121. 

(6)

PDV = 1.24 + 7.01RIV + 11.40DUMG2 + 10.60DUMG3 – 2.78RD2 – 1.95RD3 
 

where DUMG2 is Group 2; DUMG3 is Group 3; RD2 = (RIV)(DUMG2); RD3 = 

(RIV)(DUMG3); N = 121. 

(7)

PDV = 1.24 + 7.01RIV 
 

for Group 1: Low DIV; N=39 [i = 1, …, 39]. 

(8)

PDV = 12.64 + 4.23RIV 
 

for Group 2: Middle DIV; N=40 [i = 40, …, 79]. 

(9)

PDV = 11.84 + 5.05RIV 
 

for Group 3: High DIV; N=42 [i = 80, …, 121]. 

(10)

PDV = – 0.05 + 3.16RIV + 1.57DIV 
 

(11)
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for all groups: Low, Middle and High DIV; N = 121. 

PDV = 3.41 + 6.61RIV 
 

for all Groups: Low, Middle and High DIV; N = 121. 

(12)

 
Properly interpreted, Eq. (6), Eq. (7) and Eq. (11) are equivalent because they all 

contain the same information about PDV, RIV and DIV, even though DIV is not directly 

specified in any of the models except Eq. (11). Eq. (12) with no DIV influence is the base 

case for comparison. In addition, Eq. (6), Eq. (7) and Eq. (11) are equivalent to Eq. (13). 

PDVg = a + b(RIVg) + eg 
 

where g indexes groups formed on DIV, g = 1, …, G; N = 121. 

(13)

 
The number of groups is chosen in advance to partition a given sample into useful 

case-specific sub-sample sizes.  
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TABLE D1. MODEL AND SAMPLE: TESTS 
 

Explanatory Variables Eq. 
No(s). 

Linear Regression Model 
and Sample Description Significant* Total 

Adjusted R-
squared 

1, 6 DIV Group with Interaction Term 3 3 0.98 

2, 7 DIV Group with Dummy Variables 5 5 0.99 

3, 8 No Group; Low DIV Sub-Sample 1 1 0.93 

4, 9 No Group; Middle DIV Sub-Sample  1 1 0.86 

5, 10 No Group; High DIV Sub-Sample 1 1 0.96 

11 No Group; DIV Specified 2 2 1.00 

12, 13 No Group; DIV Not Specified 1 1 0.96 

* Student’s t-statistic at 5% level of probability with non-directional (two-tail) test. 

 
Note: The model and full sample combinations have the same qualitative result of either 

reject or fail to reject the null hypothesis that there is no relation between the each 

explanatory variable and the dependent variable. In addition, these model and full sample 

combinations have nearly the same explanatory power, ranging from 96% to 100%, 

except for the middle-fractile group at 86%. The model and sub-sample combinations 

effectively fit a separate model to each sub-sample.  
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TABLE D2. MODEL AND SAMPLE: ESTIMATES 

PDV = Eq. 
No. Intercept Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 
6 –1.59 +6.80 RIV +4.88 GROUP –0.66 RG   
7 +1.24 +7.01 RIV +11.40 DUMG2 +10.60 DUMG3 –2.78 RD2 –1.95 RD3 
8 +1.24 +7.01 RIV     
9 +12.64 +4.23 RIV     

10 +11.84 +5.05 RIV     
11 –0.05 +3.16 RIV +1.57 DIV    
12 +3.41 +6.61 RIV     

Bold parameter values are significant at 5%, two-tail test. 
 

 


